تاپسیس

تاپسیس

تاپسیس ، روش تاپسیس یکی از روشهای تصمیم گیری چند شاخصه (MADM) است که به رتبه بندی گزینه ها می پردازد. در این روش از دو مفهوم “حل ایده آل” و “شباهت به حل ایده آل” استفاده شده است. حل ایده آل چنان چه از اسم آن پیداست، آن حلی است که از هر جهت بهترین باشد که عموما در عمل وجود نداشته و سعی بر آن است که به آن نزدیک شویم. به منظور اندازه گیری شباهت یک طرح (یا گزینه) به حل ایده آل و ضد ایده آل، فاصله آن طرح (یا گزینه) از حل ایده آل و ضدایده آل اندازه گیری می شود. سپس گزینه ها بر اساس نسبت فاصله از حل ضد ایده آل به مجموع فاصله از حل ایده آل و ضد ایده آل ارزیابی و رتبه بندی می شوند. واژه TOPSIS از حروف اول عبارت Technique for Order of Preference by Similarity to Ideal Solution گرفته شده است.

TOPSIS یک مساله MADM با گزینه های m را به عنوان یک سیستم هندسی با نقاط m در فضای n بعدی مشاهده می کند. روش مبتنی بر این مفهوم است که گزینه جایگزین باید کمترین فاصله را از راه حل مثبت-ایده آل و طولانی ترین فاصله از راه حل منفی-ایده آل داشته باشد. TOPSIS شاخصی به نام شباهت با راه حل مثبت- ایده آل و دوری از راه حل منفی-ایده آل را تعریف می کند. سپس روش جایگزین با حداکثر شباهت به راه حل مثبت-ایده آل را انتخاب می کند.

اگر گزینه ای شبیه به یک راه حل ایده آل باشد ، درجه بالاتری دارد. راه حل ایده آل یک راه حل است که از هر جنبه ای که به طور عملی وجود ندارد بهترین است و ما سعی می کنیم آن را تقریبی کنیم. اصولاً برای اندازه گیری شباهت یک طرح (یا گزینه) با سطح ایده آل و غیر ایده آل ، فاصله آن طرح را از راه حل ایده آل و غیر ایده آل در نظر می گیریم.

تاپسیس
تاپسیس – تزیسمی

فهرست مطالب

تاپسیس چیست؟

به منظور اندازه گیری شباهت یک طرح (یا گزینه) به حل ایده آل و ضد ایده آل، فاصله آن طرح (یا گزینه) از حل ایده آل و ضدایده آل اندازه گیری می شود. سپس گزینه ها بر اساس نسبت فاصله از حل ضد ایده آل به مجموع فاصله از حل ایده آل و ضد ایده آل ارزیابی و رتبه بندی می شوند.

 

لطفا این مقاله را هم مطالعه کنید: الگوی تصمیم گیری

مفروضات زیربنایی روش تاپسیس عبارتند از :

الف – مطلوبیت هر معیار باید به طور یکنواخت، افزاینده و یا کاهنده باشد. به عبارت دیگر مطلوبیت معیار اعم از کیفی یا کمی با تغییر مقدار آن همواره افزاینده با کاهنده است. معیارها باید به طور یکنواخت کاهنده یا افزاینده باشند تا بتوان بهترین ارزش موجود آن را، ایده آل و بدترین ارزش آن را، ضد ایده آل تلقی کرد.

ب- معیارها باید به گونه ای طرح شوند که مستقل از همدیگر باشند (مستقل بودن به معنی عدم وجود روابط درونی می باشد).

ج- از آن جا که نرخ تبادل بين معیارها معمولا مقداری غیر از واحد است، فاصله گزینه ها از حل ایده آل و ضد ایده آل به صورت فاصله اقلیدسی محاسبه می شود.

نکته مهم: مواردی که در بیشتر موضوعات پروپوزال و پایان نامه ها مشاهده می شود این است که به عنوان مثال برای رتبه بندی عوامل و شاخص های پژوهش روش تاپسیس را انتخاب نموده اند، در صورتیکه این اشتباه است و روش تاپسیس فقط برای رتبه بندی گزینه های مساله مورد استفاده قرار میگیرد نه عوامل پژوهش. به عنوان مثال فرض کنید موضوع پژوهشی در مورد مدیریت زنجیره تامین سبز است و میخواهیم با تکنیک تاپسیس این مساله را حل کنیم. این مساله تعدادی معیار که بر مدیریت زنجیره تامین سبز تاثیرگذار هستند انتخاب نموده است. حال این معیارها را فقط با روشهایی نظیر آنتروپی، AHP، ANP و یا BWM قادر به وزن دهی و رتبه بندی هستیم در صورتیکه بخواهیم از روش تاپسیس استفاده کنیم باید برای مساله تعداد گزینه (آلترناتیو) تایین کنیم به عنوان مثال آلترناتیو ها می تواند تعداد شرکت باشد، تعدادی استراتژی باشند که هدف تاپسیس رتبه بندی این موارد می باشد نه رتبه بندی شاخص ها.

مزایای روش تاپسیس

. تصمیم گیری در صورت وجود معیارهای مثبت و منفی (حتی توام با هم در یک مساله) امکان پذیر است. معیارهای مثبت معیارهایی هستند گه جنبه سود دارند مثل کیفیت کالا و معیارهای منفی معیارهایی هستند که جنبه ضرر دارند مثل سختی کار.
. برای تعیین بهترین گزینه می توان تعداد قابل توجهی معیار را مورد بررسی قرار داد در حالی که در روش AHP یا روش ANP عملا و ذاتا در این زمینه محدودیت هایی وجود دارد.
. این روش ساده و دارای سرعت مناسب است و برای تعداد زیادی گزینه و معیار به خوبی پاسخگو است.
. در روش تاپسیس به راحتی می توان معیارهای کیفی را کمی کرد و تصمیم گیری با وجود معیارهای کیفی و کمی میسر است.
. خروجی سیستم به صورت کمی است و علاوه بر تعیین گزینه برتر، رتبه سایر گزینه ها به صورت عددی بیان می شود. این مقدار عددی همان نزدیکی نسبی است که پایه قوی این روش را بیان می کند.
. روش تاپسیس، دارای پایه های ریاضی مناسب است. این روش با فاصله ها سروکار دارد. تاپسیس گزینه ای را که بیشترین فاصله از بدترین گزینه و کمترین فاصله از بهترین گزینه دارد، به عنوان گزینة بهینه انتخاب می کند و به همین دلیل و پایة ریاضی اش، بر سایر روش های MADM برتری دارد.
. روش تاپسیس برتری دیگری نسبت به بعضی از روشهای MADM دارد که این روش از روش های جبرانی است. یعنی وزن تمامی گزینه ها و معیارها در تصمیم گیری دخالت داده می شود و هیچ وزنی در این روش نادیده گرفته نمی شود.

 

مراحل روش تاپسیس

جهت پیاده سازی و انجام روش تاپسیس گام های زیر اجرا می شوند.

1- تشکیل ماتریس تصمیم:

گام اولیه این روش تشکیل ماتریس تصمیم است. ماتریس تصمیم این روش شامل یکسری معیار و گزینه می باشد یک ماتریسی که معیارها در ستون ها قرار می گیرند و گزینه ها در سطر هستند. و هر سلول ماتریس ارزیابی هر گزینه نسبت به هر معیار است. بعد از اینکه ماتریس تصمیم تشکیل شد می بایست آن را توسط نظرات خبرگان تکمیل کنیم که این فرایند توسط طیف لیکرت یا ساعتی و یا اعداد واقعی صورت می گیرد در مواقعی که معیار کمی است مثل هزینه یا نرخ تولید و یا غیره که عدد واقعی آن را داریم برای هر گزینه آن عدد واقعی را قرار می دهیم اما در مواردی که معیار کیفی است و عدد کمی برای آن مفهومی ندارد از طیف 1 تا 9 یا طیف 1 تا 5 استفاده می کنیم.

2- بی مقیاس کردن ماتریس تصمیم (نرمال سازی ماتریس تصمیم):

بی مقیاس کردن در روش تاپسیس با استفاده از روش نرم صورت میگیرد و به اینصورت انجام می شود که هر درایه بر جذر مجموع مربعات درایه های آن ستون معیار تقسیم می شود. در این گام در واقع ماتریس تصمیم تبدیل به یک ماتریس بی بعد می شود.

3- تعیین ماتریس بی مقیاس وزن دار:

در این گام باید وزن معیارها که از روشهای دیگر بدست آمده است را در ماتریس نرمال ضرب کنیم تا ماتریس وزن دار حاصل شود (روش تاپسیس به تنهایی قادر به محاسبه وزن معیارها نیست بنابراین باید از روشهای دیگر نظیر AHP ، آنتروپی و … وزن معیارها را محاسبه کرد و به عنوان ورودی به این روش داد).

4- یافتن حل ایده ال و ضد ایده آل:

در این جا باید نوع معیارها مشخص شود معیارها یا جنبه مثبت دارند یا منفی. معیارهای مثبت معیارهایی هستند که افزایش آن ها باعث بهبود در سیستم شود مثل کیفیت یک محصول این معیار از نوع مثبت است و حل ایده آل آن برابر با بزرگترین درایه ستون معیار و ضد ایده آل برابر با کوچکترین درایه سلول. برای معیارهای منفی بالعکس.

برای معیارهایی که بار مثبت دارند ایده‌آل مثبت بزرگترین مقدار آن معیار است.
برای معیارهایی که بار مثبت دارند ایده‌آل منفی کوچکترین مقدار آن معیار است.
برای معیارهایی که بار منفی دارند ایده‌آل مثبت کوچکترین مقدار آن معیار است.
برای معیارهایی که بار منفی دارند ایده‌آل منفی بزرگترین مقدار آن معیار است.

5- محاسبه فاصله از حل ایده ال و ضد ایده آل:

در این گام بر اساس رابطه زیر فاصله هر گزینه را ایده ال مثبت و منفی اش محاسبه می کنیم.

فاصله در تاپسیس

6- محاسبه شاخص شباهت و رتبه بندی گزینه ها:

شاخص شباهت نشان دهنده امتیاز هر گزینه است و بر اساس رابطه زیر محاسبه می شود هرچقدر این شاخص به عدد یک نزدیکتر باشد نشان از برتری آن گزینه می دهد.

شاخص شباهت تاپسیس

الگوریتم اجرایی تاپسیس (TOPSIS)

در رتبه‌بندی گزینه‌ها به روش TOPSIS گزینه‌هایی که بیشترین تشابه را با راه‌حل ایده آل داشته باشند، رتبه بالاتری کسب می‌کنند. فضای هدف بین دو معیار به عنوان نمونه در شکل نشان داده شده است. در اینجا A+ و A- به ترتیب، راه حل ایده آل و راه حل ایده‌آل منفی است. گزینه A1 به نسبت گزینه A2 فاصله کمتری تا راه حل ایده آل و فاصله بیشتری را تا راه حل ایده آل منفی دارد.

فاصله از ایده‌آل مثبت و منفی

هدف تکنیک تاپسیس : انتخاب بهترین گزینه براساس تعدادی معیار

ملاک انتخاب گزینه: حداکثر فاصله از ایده‌آل منفی و حداکثر نزدیکی به راه‌حل ایده‌آل (مثبت)

نکته: تکنیک تاپسیس نیازمند وزن معیارها است و باید از روش بهترین-بدترین، روش انتروپی، روش سوارا یا روش AHP وزن معیارها تعیین شود.

یک دیدگاه ثبت کنید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *